Practices before the class (April 12)

- (T/F) If \mathbf{z} is orthogonal to \mathbf{u}_{1} and to \mathbf{u}_{2} and if $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then \mathbf{z} must be in W^{\perp}.
- (T/F) For each \mathbf{y} and each subspace W, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W.
- (T/F) If $\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}$, where \mathbf{z}_{1} is in a subspace W and \mathbf{z}_{2} is in W^{\perp}, then \mathbf{z}_{1} must be the orthogonal projection of \mathbf{y} onto W.
- (T/F) The best approximation to y by elements of a subspace W is given by the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$.

Practices before the class (April 12)

- (T/F) If \mathbf{z} is orthogonal to \mathbf{u}_{1} and to \mathbf{u}_{2} and if $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then \mathbf{z} must be in W^{\perp}. True. Recall from Section 6.1 that W^{\perp} denotes the set of all vectors orthogonal to a subspace W.
- (T/F) For each \mathbf{y} and each subspace W, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W. True by the Orthogonal Decomposition Theorem.
- (T/F) If $\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}$, where \mathbf{z}_{1} is in a subspace W and \mathbf{z}_{2} is in W^{\perp}, then \mathbf{z}_{1} must be the orthogonal projection of \mathbf{y} onto W. True. The orthogonal decomposition in Theorem 8 is unique.
- (T/F) The best approximation to y by elements of a subspace W is given by the vector $\mathbf{y}-\operatorname{proj}_{w} \mathbf{y}$. False. The Best Approximation Theorem says that the best approximation to \mathbf{y} is proj$w \mathbf{y}$.
6.4 The Gram-Schmidt Process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^{n}. We will use the next example to introduce the detail of the process.

Example 1. Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$. Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.
ANS: Step 1 . Let $\vec{v}_{1}=\vec{x}_{1}$ and $W_{1}=\operatorname{span}\left\{\vec{x}_{1}\right\}=\operatorname{span}\left\{\vec{v}_{1}\right\}$. \vec{v}_{2} Step 2. Let $\vec{V}_{2}=\vec{x}_{2}-\operatorname{proj} \omega_{1} \vec{x}_{2}$ then \vec{V}_{2} is the component of \vec{x}_{2} orthogonal to \vec{x}_{1} and $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal basis for $W_{2}=\operatorname{span}\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$.

Compute $\vec{V}_{2}=\vec{x}_{2}-\operatorname{proj}_{w_{1}} \vec{x}_{2}$

$$
\begin{aligned}
& =\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{3}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]
\end{aligned}
$$

Step 2' (optional). We can scale \vec{V}_{2} to simplify the later computation. So we have

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{V}_{2}^{\prime}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]
$$

We update $W_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}^{\prime}\right\}$
Step 3. Let

$$
\vec{v}_{3}=\vec{x}_{3}-\operatorname{proj}_{w_{1}} \vec{x}_{3}
$$

then \vec{V}_{3} is the component of \vec{x}_{3} orthogonal to w_{2} and $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{v}\right\}$ an orthogonal set.
We compute

$$
\begin{aligned}
p^{p} \int_{w_{2}} \vec{x}_{3} & =\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{x}_{3} \cdot \vec{v}_{2}^{\prime}}{\vec{v}_{2}^{\prime} \cdot \vec{v}_{2}^{\prime}}{ }^{\prime} \\
& =\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{2}{12}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\vec{V}_{3} & =\vec{x}_{3}-\operatorname{proj}_{w_{2}} \vec{x}_{3} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
0 \\
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
\end{aligned}
$$

Note \vec{v}_{3} is in W since \vec{x}_{3} and proj$w_{2} \vec{x}_{3}$ are both in W_{3}.
Thus $\left\{\vec{v}_{1}, \vec{v}_{2}{ }^{\prime}, \vec{V}_{3}\right\}$ is an orthogonal set of nonzero vectors so they are linearly independent.
Since W is 3 -dim' $l .\left\{\vec{v}_{1}, \vec{V}_{2}^{\prime}, \overrightarrow{V_{s}}\right\}$ is an orthogonal basis for W by the Basis Theorem.

Theorem 11 The Gram-Schmidt Process
Given a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. In addition

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \quad \text { for } 1 \leq k \leq p
$$

Orthonormal Bases

- An orthonormal basis is constructed easily from an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$: simply normalize (ie., "scale") all the \mathbf{v}_{k}.
- When working problems by hand, this is easier than normalizing each \mathbf{v}_{k} as soon as it is found (because it avoids unnecessary writing of square roots).

Example 2. Find an orthonormal basis of the subspace spanned by the vectors in Example 1.
Recall from Example 1.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad, \quad \vec{v}_{2}^{\prime}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \quad, \vec{v}_{3}=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

An orthonormal basis is

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]_{\frac{1}{\sqrt{h}}=\frac{3}{\sqrt{b}}[0]}, \vec{u}_{2}=\frac{\vec{v}_{2}^{\prime}}{\left\|\vec{v}_{2}^{\prime}\right\|}=\frac{1 / 2}{\sqrt{2 \sqrt{3}}}[\\
& \vec{u}_{3}=\frac{\vec{v}_{3}}{\left\|\vec{v}_{3}\right\|}=\frac{1 \sqrt{\sqrt{4}}}{\sqrt{\frac{4+1+1}{9}}}\left[\begin{array}{c}
0 \\
-\frac{2}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Example 3. Find a QR factorization of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
Ans: First notice that the columns of A are $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ given in Example 1. We found the orthonormal basis $\left\{\vec{u}_{1}, \vec{U}_{2}, \vec{u}_{3}\right\}$. in Example 2. So we have them as columns of Q :

$$
\begin{aligned}
& Q=\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -3 / 2 \sqrt{3} & 0 \\
1 / 2 & 1 / 2 \sqrt{3} & -2 / \sqrt{6} \\
1 / 2 & 1 / 2 \sqrt{3} & 1 / \sqrt{6} \\
1 / 2 & 12 \sqrt{3} & 1 / \sqrt{6}
\end{array}\right] \\
& R \text { first notice } Q^{\top} Q=T
\end{aligned}
$$

To find R, first notice $Q^{\top} Q=I$. (Thy 6 in $\xi 6.2$, since Q has orthonormal columns). So we have

$$
\underline{Q^{\top} A} A=Q^{\top}(Q R)=I R=B
$$

We compute

$$
R=Q^{\top} A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
-3 / 2 \sqrt{3} & 1 / 2 \sqrt{3} & 1 / 2 \sqrt{3} & 1 / 2 \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{6} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2 & 3 / 2 & 1 \\
0 & 3 / 2 \sqrt{3} & 1 / \sqrt{3} \\
0 & 0 & 2 / \sqrt{6}
\end{array}\right]
$$

Exercise 4. Find an orthogonal basis for the column space of the given matrix

$$
A=\left[\begin{array}{rrr}
3 & -5 & 1 \\
1 & 1 & 1 \\
-1 & 5 & -2 \\
3 & -7 & 8
\end{array}\right]
$$

Solution. Call the columns of the matrix $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} and perform the Gram-Schmidt process on these vectors:

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{x}_{1} \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\mathbf{x}_{2}-(-2) \mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
3 \\
3 \\
-1
\end{array}\right] \\
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\mathbf{x}_{3}-\frac{3}{2} \mathbf{v}_{1}-\left(-\frac{1}{2}\right) \mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
1 \\
1 \\
3
\end{array}\right]
\end{gathered}
$$

Thus an orthogonal basis for W is

$$
\left\{\left[\begin{array}{r}
3 \\
1 \\
-1 \\
3
\end{array}\right],\left[\begin{array}{r}
1 \\
3 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{r}
-3 \\
1 \\
1 \\
3
\end{array}\right]\right\}
$$

Exercise 5. The columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that $A=Q R$.
$A=\left[\begin{array}{rr}5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5\end{array}\right], Q=\left[\begin{array}{rr}5 / 6 & -1 / 6 \\ 1 / 6 & 5 / 6 \\ -3 / 6 & 1 / 6 \\ 1 / 6 & 3 / 6\end{array}\right]$
Solution. Since A and Q are given, $R=Q^{T} A=\left[\begin{array}{rrrr}5 / 6 & 1 / 6 & -3 / 6 & 1 / 6 \\ -1 / 6 & 5 / 6 & 1 / 6 & 3 / 6\end{array}\right]\left[\begin{array}{rr}5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5\end{array}\right]=\left[\begin{array}{rr}6 & 12 \\ 0 & 6\end{array}\right]$

