Practices before the class (April 12)

- (T/F) If z is orthogonal to u₁ and to u₂ and if W = Span {u₁, u₂}, then z must be in W[⊥].
- (T/F) For each **y** and each subspace W, the vector $\mathbf{y} \text{proj}_W \mathbf{y}$ is orthogonal to W.
- (T/F) If y = z₁ + z₂, where z₁ is in a subspace W and z₂ is in W[⊥], then z₁ must be the orthogonal projection of y onto W.
- (T/F) The best approximation to y by elements of a subspace W is given by the vector y proj_W y.

Practices before the class (April 12)

- (T/F) If z is orthogonal to u₁ and to u₂ and if W = Span {u₁, u₂}, then z must be in W[⊥]. True. Recall from Section 6.1 that W[⊥] denotes the set of all vectors orthogonal to a subspace W.
- (T/F) For each y and each subspace W, the vector y proj_W y is orthogonal to W.
 True by the Orthogonal Decomposition Theorem.
- (T/F) If y = z₁ + z₂, where z₁ is in a subspace W and z₂ is in W[⊥], then z₁ must be the orthogonal projection of y onto W. True. The orthogonal decomposition in Theorem 8 is unique.
- (T/F) The best approximation to y by elements of a subspace W is given by the vector y proj_W y. False. The Best Approximation Theorem says that the best approximation to y is proj_Wy.

6.4 The Gram-Schmidt Process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^n . We will use the next example to introduce the detail of the process.

Example 1. Let
$$\mathbf{x}_{1} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \mathbf{x}_{2} = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}, \text{ and } \mathbf{x}_{3} = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}$$
. Then $\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\}$ is clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^{4} . Construct an orthogonal basis for W .
ANS: Step 1, Let $\vec{v}_{1} = \vec{x}_{1}$ and $W_{1} = \text{span} \vec{v}_{1} \vec{k}_{1} = \text{span} \vec{v}_{1} \vec{v}_{1}$.
Step 2. Let $\vec{v}_{1} = \vec{x}_{2} - \text{proj}_{W_{1}} \vec{x}_{2}$
then \vec{v}_{2} is the component of \vec{x}_{1} orthogonal basis
for $W_{1} = \text{span} \vec{v}_{1}, \vec{v}_{2} \vec{j}$ is an orthogonal basis
for $W_{1} = \text{span} \vec{v}_{1}, \vec{v}_{2} \vec{j}$.
Point $\vec{v}_{1} = \vec{x}_{2} - proj_{W_{1}} \vec{x}_{2}$
 $\vec{v}_{1} = \vec{v}_{1} \text{ and } \vec{v}_{1}, \vec{v}_{2} \vec{j}$.
 $\vec{v}_{1} = \vec{v}_{2} - proj_{W_{1}} \vec{x}_{2}$
 $\vec{v}_{1} = \vec{v}_{1} + proj_{W_{1}} \vec{v}_{2} \vec{j}$.
 $\vec{v}_{1} = \vec{v}_{1} + proj_{W_{1}} \vec{v}_{2} \vec{j}$.
 $\vec{v}_{2} = \vec{x}_{2} - proj_{W_{1}} \vec{x}_{2}$
 $\vec{v}_{1} = \vec{v}_{1} - \frac{\vec{x}_{1} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{{}}} \vec{v}_{{}}$.
 $\vec{v}_{1} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$

Step 2' (optional). We can scale V_1 to simplify the later computation. So we have $\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{V}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ We update $W_2 = \text{span} ? \vec{v}_1, \vec{v}_2' \vec{j}$ Step 3. Let $\overline{V}_3 = \overline{X}_3 - \operatorname{proj}_{W_1} \overline{X}_3$ then \vec{v}_s is the component of \vec{x}_s \vec{x}_s orthogonal to W_2 and $\vec{v}_1, \vec{v}_2, \vec{v}_3$ an orthogonal set. We compute $p_{W_{\lambda}}^{(i)} = \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \quad \vec{v}_{1} + \frac{\vec{x}_{3} \cdot \vec{u}_{1}}{\vec{v}_{1} \cdot \vec{v}_{2}} \quad \vec{v}_{1}$ $=\frac{2}{4}\begin{bmatrix}1\\1\\1\end{bmatrix}+\frac{2}{12}\begin{bmatrix}-3\\1\\1\end{bmatrix}$ $= \begin{vmatrix} \gamma_3 \\ \gamma_3 \end{vmatrix}$

$$\vec{v}_{3} = \vec{x}_{3} - \operatorname{proj}_{W_{*}} \vec{x}_{3}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$
Note \vec{v}_{s} is in W since \vec{x}_{s} and $\operatorname{proj}_{W_{*}} \vec{x}_{s}$ are both in W_{s} .

Note \vec{v}_{s} is in W since \vec{x}_{s} and $\operatorname{proj}_{W_{*}} \vec{x}_{s}$ are both in W_{s} .

Thus $\{\vec{v}_{1}, \vec{v}_{s}', \vec{v}_{s}\}$ is an orthogonal set of nonzero vectors so they are linearly independent.

Since W is 3 -dimile. $\{\vec{v}_{1}, \vec{v}_{s}', \vec{v}_{s}\}$ is an orthogonal set of nonzero vectors for W by the Bosis Theorem.

Theorem 11 The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$ext{Span}\left\{\mathbf{v}_1,\ldots,\mathbf{v}_k
ight\}= ext{Span}\left\{\mathbf{x}_1,\ldots,\mathbf{x}_k
ight\} \quad ext{ for } 1\leq k\leq p$$

Orthonormal Bases

- An orthonormal basis is constructed easily from an orthogonal basis $\{v_1, \ldots, v_p\}$: simply normalize (i.e., "scale") all the v_k .
- When working problems by hand, this is easier than normalizing each \mathbf{v}_k as soon as it is found (because it avoids unnecessary writing of square roots).

Example 2. Find an orthonormal basis of the subspace spanned by the vectors in **Example 1.**

Recall from Example 1.

$$\vec{V}_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{V}_{2}' = \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\vec{V}_{3} = \begin{pmatrix} 0 \\ -\frac{3}{43} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$
An orthonormal basis is
 $\vec{u}_{1} = \frac{\vec{V}_{1}}{\|\vec{V}_{1}\|} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{u}_{2} = \frac{\vec{V}_{2}'}{\|\vec{V}_{2}'\|} = \frac{1}{\sqrt{9+1+|+1|}} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2\sqrt{3}} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
 $\vec{u}_{3} = \frac{\vec{V}_{3}}{\|\vec{V}_{3}\|} = \frac{1}{\sqrt{9+1+|+1|}} \begin{bmatrix} 0 \\ -\frac{3}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 0 \\ -\frac{2}{1} \\ 1 \\ 1 \end{bmatrix}$

<u>QR Factorization of Matrices</u>

Theorem 12 The QR Factorization

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Example 3. Find a QR factorization of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
.
ANS: First notice that the columns of A are $\vec{k}_1, \vec{k}_2, \vec{k}_3$
given in Example 1. We found the orthonormal basis
 $j\vec{u}_1, \vec{u}_2, \vec{u}_3$ in Example 2. So we have them as
columns of Q :
 $Q = [\vec{u}_1, \vec{u}_2, \vec{u}_3] = \begin{bmatrix} k_2 & -32\sqrt{3} & 0 \\ k_2 & k_3 & 3 & -3\sqrt{6} \\ k_2 & k_3 & k_3 & -3\sqrt{6} \\ k_2 & k_3 & k_3 & k_3 \\ k_3 & k_3 & k_3 & k_3 \\ k_4 & k_3 & k_3 & k_3 \\ k_5 & k_3 & k_3 & k_3 \\ k_5 & k_3 & k_3 & k_3 \\ k_6 & k_6 & k_6 \\ k_6 & k_6 & k_6 \\ k_6 & k_6 & k_6 \\ k_1 & k_3 & k_3 \\ k_6 & k_6 & k_6 \\ k_6 & k_6 & k_6 \\ k_6 & k_6$

Exercise 4. Find an orthogonal basis for the column space of the given matrix

$$A = \begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$$

Solution. Call the columns of the matrix \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 and perform the Gram-Schmidt process on these vectors:

$$\mathbf{v}_1 = \mathbf{x}_1$$
$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-2)\mathbf{v}_1 = \begin{bmatrix} 1\\3\\3\\-1 \end{bmatrix}$$
$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \mathbf{x}_3 - \frac{3}{2}\mathbf{v}_1 - \left(-\frac{1}{2}\right)\mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\3 \end{bmatrix}$$

Thus an orthogonal basis for W is

$\left \right $	3		[1]		$\left\lceil -3 \right\rceil$	
	1		3		1	
Ì	-1	,	3	,	1	Ì
	3		[-1]		3	J

Exercise 5. The columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that A = QR.

$$A = egin{bmatrix} 5 & 9 \ 1 & 7 \ -3 & -5 \ 1 & 5 \end{bmatrix}, Q = egin{bmatrix} 5/6 & -1/6 \ 1/6 & 5/6 \ -3/6 & 1/6 \ 1/6 & 3/6 \end{bmatrix}$$

Solution. Since A and Q are given, $R = Q^T A = \begin{bmatrix} 5/6 & 1/6 & -3/6 & 1/6 \\ -1/6 & 5/6 & 1/6 & 3/6 \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 0 & 6 \end{bmatrix}$